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Motivation

Motivation for the fermion loop formulation

Possibility to control fermion sign problem:

e.g. for N = 16 SUSY YM QM,
fermion contribution decomposes into fermion sectors,
each sector has definite sign

New way to simulate fermions (including gauge fields):

local fermion algorithm,
works for massless fermions,
no critical slowing down

Interesting physics:

testing gauge/gravity duality,
thermodynamics of black holes
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Dualities, black holes and all that

Gauge/gravity duality conjecture:

U(N) gauge theories as a low energy effective theory of N
D-branes

Dimensionally reduced large-N super Yang-Mills might provide
a nonperturbative formulation of the string/M-theory

Connection to black p-branes allows studying black hole
thermodynamics through strongly coupled gauge theory:

super Yang-Mills
in (p+1)-dim.

IIA/IIB
superstring on
black p-brane
background

Dp-branes in su-
perstring theory

equivalent

closed string
open string
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Continuum Model

Start from N = 1 SYM in d = 4 (or 10) dimensions

Dimensionally reduce to 1-dim. N = 4 (or 16) SYM QM:

S =
1

g2

∫ β

0

dt Tr

{
(DtXi )

2 − 1

2
[Xi ,Xj ]

2 + ψDtψ − ψσi [Xi , ψ]

}

covariant derivative Dt = ∂t − i [A(t), ·],
time component of the gauge field A(t),

spatial components become bosonic fields Xi (t) with
i = 1, . . . , d − 1,

anticommuting fermion fields ψ(t), ψ(t),

σi are the γ-matrices in d dimensions

all fields in the adjoint representation of SU(N)
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Continuum Model

Start from N = 1 SYM in d = 4 (or 10) dimensions

Dimensionally reduce to 1-dim. N = 4 (or 16) SYM QM:

S =
1

g2

∫ β

0

dt Tr

{
(DtXi )

2 − 1

2
[Xi ,Xj ]

2 + ψDtψ − ψσi [Xi , ψ]

}

covariant derivative Dt = ∂t − i [A(t), ·],
time component of the gauge field A(t),

spatial components become bosonic fields Xi (t) with
i = 1, 2, 3 (for N = 4),

anticommuting fermion fields ψ(t), ψ(t),
(complex 2-component spinors for N = 4)
σi are the γ-matrices in d dimensions
(Pauli matrices for N = 4)

all fields in the adjoint representation of SU(N)
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Lattice regularisation

Discretise the bosonic part:

SB =
1

g2

Lt−1∑
t=0

Tr

{
DtXi (t)DtXi (t)−

1

2
[Xi (t),Xj(t)]

2

}
with DtXi (t) = U(t)Xi (t + 1)U†(t)− Xi (t)

Use Wilson term for the fermionic part,

SF =
1

g2

Lt−1∑
t=0

Tr
{
ψ(t)Dtψ(t)− ψ(t)σi [Xi (t), ψ(t)]

}
,

since

∂W =
1

2
(∇+ +∇−)± 1

2
∇+∇− d=1

=⇒ ∇±
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Lattice regularisation

Specifically, we have in uniform gauge U(t) = U

SF =
1

2g2

Lt−1∑
t=0

[
−ψa

α(t)W ab
αβψ

b
β(t + 1) + ψ

a

α(t)Φac
αβ(t)ψc

β(t)
]

where W ab
αβ = 2δαβ ⊗ Tr{T aUT bU†}.

Φ is a 2(N2 − 1)× 2(N2 − 1) Yukawa interaction matrix:

Φac
αβ(t) = (σ0)αβ ⊗ δac − 2 (σi )αβ ⊗ Tr{T a[Xi (t),T

c ]}

Determinant reduction techniques give:

detDp,a = det

[
Lt−1∏
t=0

(Φ(t)W †)∓ 1

]
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Lattice regularisation

Specifically, we have in uniform gauge U(t) = U

SF =
1

2g2

Lt−1∑
t=0

[
−ψa

α(t)W ab
αβψ

b
β(t + 1) + ψ

a

α(t)Φac
αβ(t)ψc

β(t)
]

where W ab
αβ = 2δαβ ⊗ Tr{T aUT bU†}.

Φ is a 2(N2 − 1)× 2(N2 − 1) Yukawa interaction matrix:

Φac
αβ(t) = (σ0)αβ ⊗ δac − 2 (σi )αβ ⊗ Tr{T a[Xi (t),T

c ]}

Determinant reduction techniques give:
(for finite density µ 6= 0)

detDp,a = det

[
Lt−1∏
t=0

(Φ(t)W †)∓ e−µLt

]
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Hopping expansion

Hopping expansion of the fermion Boltzmann factor:

exp(−SF ) ∝
∏

t,a,b,α,β

 1∑
mab

αβ(t)=0

(
−Φab

αβ(t)ψ
a

α(t)ψb
β(t)

)mab
αβ(t)


×

∏
t,a,α

 1∑
ha

α(t)=0

(
ψ

a

α(t)ψa
α(t + 1)

)ha
α(t)


Grassmann integration:

every ψ
a

α(t)ψa
α(t) needs to be saturated,

yields local constraints on occupation numbers ha
α(t) and

mab
αβ(t)

Represent each ψ
a

α(t)ψa
α(t) by and ha

α(t),mab
αβ(t) by −→:

only closed, oriented fermion loops survive

Each fermion loop picks up a factor (−1)
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Hopping expansion building blocks

Non-temporal (flavour or colour) hops mab
αβ(t) = 1:

z}|{
a, α

z}|{
b, β

weight: Φab
αβ(t)

t

weight: Φaa
αα(t)

Temporal hops ha
α(t) = 1 (only forward!)

t

t + 1
weight: 1

Gauge links allow flavour non-diagonal temporal hops:

t

t + 1
b, β|{z}

z}|{
a, α

weight: δαβ · Tr
[
T aUT bU†]
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Fermion sectors

Configurations can be classified according to the number of
propagating fermions nf :

nf = 0 nf = 1 . . . nf = 2(N2 − 1)
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Fermion sectors

Propagation of fermions described by transfer matrices Tnf
(t)

Fermion contribution to the partition function is simply

Znf
= Tr

[
Lt−1∏
t=0

Tnf
(t)

]

and the full contribution with periodic b.c. is

Zp = Z0−Z1± . . .+Z2(N2−1) =

2(N2−1)∑
nf =0

(−1)nf Tr

[
Lt−1∏
t=0

Tnf
(t)

]

Size of Tnf
is given by the number of states in sector nf :

# of states =

(
2(N2 − 1)

nf

)
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Fermion sectors

Propagation of fermions described by transfer matrices Tnf
(t)

Fermion contribution to the partition function is simply

Znf
= Tr

[
Lt−1∏
t=0

Tnf
(t)

]

and the full contribution with antiperiodic b.c. is

Za = Z0+Z1+ . . .+Z2(N2−1) =

2(N2−1)∑
nf =0

Tr

[
Lt−1∏
t=0

Tnf
(t)

]

Size of Tnf
is given by the number of states in sector nf :

# of states =

(
2(N2 − 1)

nf

)
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Fermion sector nf = 0

Fermion sector nf = 0 is simple:

T0(t) is a 1× 1 matrix

T0(t) = det Φ(t)

all signs from fermion loops
taken into account

fermion contribution factorises
completely:

Z0 =
Lt−1∏
t=0

det Φ(t)

nf = 0
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Fermion sector nf = 2(N2 − 1)

Fermion sector nf = 2(N2 − 1) ≡ nmax
f is even simpler:

Tnmax
f

(t) = 1

including the gauge link:

Tnmax
f

(t) = det [σ0 ⊗W ] = 1

all signs from fermion loops
taken into account

fermion contribution is trivial:

⇒ quenched sector

nf = 2(N2 − 1)
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Fermion sector nf = 1

Fermion sector nf = 1 less simple:

T1(t) is [2(N2 − 1)]2 matrix

(T1)ij = detΦ|Φki=δkj ,Φjk=δik

= detΦ\j\i

including the gauge link:(
TU

1

)
ij

= det[(σ0 ⊗W )\j\i ]

all signs taken into account

fermion contribution:

Z1 =
Lt−1∏
t=0

Tr
[
T1(t) · TU

1

]

nf = 1
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Fermion sector nf ≥ 1

Z1 not necessarily positive

Generic fermion sector nf > 1 increasingly more complicated:

transfer matrices become large,
matrix elements determined by permanents

Sectors with many states may be simulated with worm
algorithm:

boson bond formulation is also available
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Conclusions

Fermion loop formulation yields decomposition of fermion
determinant into fermion sectors

Each fermion sector described by transfer matrices

nf = 0, 1 and nmax
f implemented:

numerical results in reach,
sign problem for nf = 1?

Extension to N = 16 SYM QM:

in principle straightforward,
but need ψDtψ,
no notion of nf for Majorana in d = 0


	Introduction
	Fermion Loop Formulation
	Fermion Sectors and Transfer Matrices

